How to maximize the superconducting critical temperature in a molecular superconductor -- ScienceDaily
How to maximize the superconducting critical temperature in a molecular superconductor -- ScienceDaily
In results published in the American scientific journal Science Advances, the team was able to demonstrate the guiding influence of the molecular electronic structure in controlling superconductivity and achieving the maximum Tc, opening the way to new routes in the search of new molecular superconductors with enhanced figures of merit.
Background
Metals are used for electricity transmission, but energy is lost as heat because of electrical resistance. Superconductors have no electrical resistance and can carry electricity without losing energy, so it is important to find superconductors which can work at the highest possible temperature.
Most superconductors have simple structures built from atoms. But recently, superconductors made from molecules arranged in regular solid structures have been found.
Work by members of the team on molecular fulleride-based systems has previously led to the discovery of the highest working temperature (at 38 K) for a molecular superconductor (Nature Materials 7, p. 367, 2008).
The electronic ground state, which is in competition with superconductivity, was found to be magnetically ordered (Science 323, p. 1585, 2009). And the zero-resistance superconducting state could be switched on by tuning the exact arrangement of the C60 molecules in the solid by external pressure (Nature 466, p. 221, 2010).
The controlling role of the molecular electronic structure was then identified by demonstrating that the parent insulating state involves Jahn-Teller distortion*3 of the molecular anions that produces the magnetism from which the superconductivity emerges (Nature Communications 3, 912, 2012).
Breakthrough
The research team has addressed for the first time the relationship between the parent insulator, the normal metallic state above Tc and the superconducting pairing mechanism in a new family of chemically-pressurized fullerene materials. This is a key question in understanding all unconventional superconductors including the high-Tc cuprates, the iron pnictides and the heavy fermion systems.
Their work unveiled a new state of matter -- the Jahn-Teller metal -- and showed that when the balance between molecular and extended lattice characteristics of the electrons at the Fermi level is optimized, the highest achievable temperature for the onset of superconductivity is attained.
As synthetic chemistry allows the creation of new molecular electronic structures distinct from those in the atoms and ions that dominate most known superconductors, there is now strong motivation to search for new molecular superconducting materials.
Notes
(*1) Fullerenes
Fullerenes are molecules consisting of an even number of carbon atoms arranged over the surface of a closed hollow cage. C60 (buckminsterfullerene) which has a soccer-ball shape is the archetypal member of the fullerene family and can be considered as the third allotrope of carbon after graphite and diamond. British and American scientists won the Nobel Prize in Chemistry in 1996 for their discovery of the fullerenes.
(*2) Superconductivity
Superconductors have no electrical resistance and can carry electricity without losing energy. The temperature at which the resistance becomes zero is called the critical temperature for the onset of superconductivity, Tc. In superconducting materials, a strong attractive force acts between the electrons, which pair up and can move throughout the material without resistance.
(*3) Jahn-Teller effect
The Jahn-Teller theorem states that for any degenerate electronic state associated with a molecular electronic configuration, there will be some electron-vibrational interaction which lifts the electronic degeneracy and leads to a molecular distortion. A negatively-charged C60 molecular ion can undergo a Jahn-Teller distortion by reshaping its molecular structure away from perfect icosahedral symmetry.
Welcome to SUV System Ltd!
SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.
We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.
SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com
Electronic Components distributor:http://www.suvsystem.com
Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html
IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html
LED Distributor:http://www.suvsystem.com/l/LED-1.html
Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html
Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html
Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html
Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html
SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc
we are focus on the following fields,and hope we can help you.
AVX Resistors Resistors TOSHIBA Diodes Switching Diodes ROHM Resistors Vishay resistors NXP Transistors Ligitek LED Chip Inductors ELPIDA IC High Precision Resistors Diodes Inc Texas Instruments(TI) IC Microchip IC Renesas parts IC MURATA IC NXP Diodes Resistor Arrays Fast Recovery Diodes MAXIM IC Bipolar Transistors NEC Transistors TOSHIBA Transistors Transistors Thin Film Resistors Chip Fuses AD IC INTERSIL IC ALTERA IC components Electronic News Zener Diodes FAIRCHILD diodes Freescale Semiconductor TI IC Cypress IC YAGEO Resistors Kingbrigt LED LED part Military IC
http://www.suvsystem.com/a/43479.aspx
Comments
Post a Comment